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The purpose of the research project "Multi-Disciplinary Optimization of
Aeroservoelastic Systems" was to advance the methodology of multi-disciplinary
optimization and to develop efficient analytical and computational tools for
simultaneous structural and control system optimal design with aeroservoelastic
constraints.  These tasks have been accomplished successfully. The new
analyti;:al methods, computation codes and case studies developed during the
course of this work extend the knowledge of this complex subject and supply the
aircraft developer with practical guidelines and efficient computational tcols
for achieving integrated design goals in an optimal way.

The first part of the work, in which the Minimum-State aeroservoelastic
modeling method has been extended to deal with large problems with varying
parameters, has been reported in the interim report of March 1st, 1990. The
main results of this part are summarized in Appendix A, which has been accepted
for publication in the AIAA Journal, and utilized in the MIST computer code.

The second part of the research project included further developments of
analytical and computational tools and a synthesis of an end-to-end optimization
procedure from data-base construction to the numerical optimal design process.
This part is summarized in Appendix B, which will be presented at the 3rd
Airforce/NASA symposium on multi-disciplinary analysis and optimization in
September 24-26, 1990, San Francisco, CA, and utilized in the FASER computer

code.
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Extensions to the Minimum-State Aeroelastic Modeling Method
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Introduction

In order to account for unsteady aerodynamics in first-order, time-invariant
state-space formulation of aeroelastic equations of motion, the aerodynamic forces have to
be described as a rational function in the Laplace domain. The Minimum-State (MS)
aerodynamic approximation method!” was designed to minimize the number of aerodynamic
stat:es in the resulting acroelastic model. References 2 and 3 applied the MS method to
subsonic aeroservoelastic problems with one flutter mechanism and demonstrated a reduction
of about 75% of the number of aerodynamic states relative to other methods with the same
level of accuracy. The effectiveness of the MS method was increased by the introduction of
a physical weighting technique2 which weights each aerodynamic input data term according
to its relative importance. Reference 4 used the MS formulation for additional reduction
of the model size by dynamic residualization of high frequency structural states. The MS
and the physical weighting procedures are extended in this paper to expand their
efficiency and generality and to improve the dynamic residualization. Even though the
formulation and numerical examples deal with structural-mode-related aerodynamics only,

the extensions are applicable to control surface and gust related aerodynamics as well.

The MS Approximation Procedure
The MS method approximates the Laplace domain generalized aerodynamic force

coefficient matrix by:

@) = [Ag) + Ajlp + [AJp” + DU - [R))"'(Elp (1)

*Senior Research Fellow, Faculty of Aerospace Engineering, Member AIAA



where p is the nondimensionalized Laplace variable p=sb/V, where b is a reference length
and V is the true airspeed. The resulting time-domain state-space aeroelastic equations of
motion are presented in Ref. 2. The number of aerodynamic states (m) is equal to the
order to [R].

The input data are unsteady aerodynamic complex matrices [Qs(ikl)]z[F(kl)]+i[G(k1)],
calculated at several pzil\'L points where each klz(olb/V is a tabulated reduced frequency.
The approximation problem is to find the combination of the real valued [AO], [Al], [A’Z]’
[R], [D] and [E] of Eq. (1) that best fit the (abulated data. The mxm aerodynamic lag
matrix [R] is diagonal with distinct negative values to be chosen by the analyst. The
applications of Refs. 2 and 4 indicated that the results are not very sensitive 10 the lag
values when they are spread over the range of tabulated kl values. Three approximation
constraints are applied to each term of [QS] in order to reduce the problem size Dby
explicitly determining [AO], [Al] and [A2]' The formulation of Ref. 2 is extended here 10
allow more flexibility in constraint selection without increasing the problem size. The
three constraints are: a) data match at kL:O, which yields:

Ag.. = Fy(©® @
1)
b) real-part data-match at a non-zero klzkp or a zero coefficient constraint, which yield:

-1
— 2 T(.2 2 _
A%—[%@-ﬂ#ﬂﬂwwq1ﬁmmm] (B} or Ay =0 3)
where {Di}T is the ith row of [D] and (Ej} is the jth column of [E]; and ¢) imaginary-part

data-match at a non-zero klzkg‘ or a zero coefficient constraint which yield:

_ T(, 2 2 -1 _
Alij—Gij(kg)/ngrlDi] {kg[I]Jr[R]] [R]{Ej} or Alij =0 (4)

The approximation formula (1) and the constraint Egs. (2), (3) and (4) yield an over
determined set of approximale equations which are solved for [D] and [E] by an iterative,
weighted least-square procedure which starts with an initial guess of [D]. The equations
and the solution procedure are those of Ref. 2, modified to allow kf of Eq. (3) and kg of

Eq. (4) to have different values for different aerodynamic terms, and to allow the data



match constraints 1o be replaced by zero coefficient constraints.

Approximation Constraints for Subséquent Dynamic Residualization
The MS aeroelastic model is used in Ref. 4 for a further reduction of the model size
via dynamic residualization which eliminates the states associated with a subset of high
frequency vibration modes, but retains most of their effects on the retéined states. The
coefficient matrices of Eq. (1) are partitioned into the retained (r) and eliminated (e)

partitions:

A. A.
C[Al=| wr lre| fori=012; D)= o | 5 (Bl = [E EJ (5)
Pl A. A. e roe
1er ) 168

Unlike the static residualization, which neglects all the e related partitions except for

the AO terms, the dynariic residualization neglects only the A1 , A2 , A2 and A,)
ee ee er “re

terms. The retained effects of A1 , A1 , De and Ee improve the accuracy of the
er re

residualized model without increasing its size. The attempt made in Ref. 4 to improve the
dynamic residualization cven further by constraining the neglected terms to be zero in the
preceding MS procedure (in lieu of data match constraints) did not yield better results.

The reason was that with A, =0 the approximation errors are increased significantly.
ee

This had a negative effect on the quality of the entire approximated aerodynamics
(including that of the retained modes) because the MS procedure minimized a single total
error parameter. The modification suggested here is to apply the least-square solutions
for (Er] and [Dr] with the data associated with the retained modes only. The [De] and

[Ee] matrices are solved with the entire data. As a result, the approximated [QS ] 1s
T

not affected by the inclusion of the eliminated modes in the approximation procedure.

Physical Weighting

A physical weighting method which weights each term of the tabulated aerodynamic data



according to a "measure of importance” is presented in Ref. 2. The measure-of-importance

matrix associated with [Q"(ikl)] is:

1 \T ©)

W1, = | [T+ iIBK, + K + 4, 1Q(ik )]
where [MS], [BS] and [KS] are the generalized mass, damping and stiffness matrices and q,
is a nominal dynamic pressure. As shown in Refs. 2 and 3, the variations of the
measure-of-importance terms of Eq. (6) with k may have very sharp peaks. In addition, the
peak values of many terms may be several orders-of-magnitude smaller than other peaks.
The resulting extreme variations of weights may cause unrealistic approximation curves.
To ensure good results at k values which fall befween the tabulated ones, and to
facilitate the application of the resulting aeroelastic model to a variety of flow
conditions, structural modifications and control parameters, it may be desired to widen
the weight peaks and to scale up the extremely low weights. The peak widening is
performed in Dvd cycles where, in each cycle, \Q’ij(kl) is changed to be max[\x’ij(kl_l),
\%,ij(kl)’ VI\\/ij(kHI)] of the previous cycle. The weights to be applied in the MS procedure
are then calculated by:

Y

W”L = \/A\/..l max{— 1 , NCUL} O
g Y max{W..) W..
P ] 1] 1]

where Wij = max{

1

i A
Qs. .(1k1) \Wijl}
1)
and where Wcut is defined by the analyst. In this way, the maximum weighted absolute

value of each aerodynamic term falls between Wcut and 1.

Numerical Examples
The numerical examples deal with the mathematical model of the Active Flexible Wing
(AFW) wind-tunnel model (described in Ref. 4) with symmeiric boundary conditions at Mach
0.9. The Doublet Lattice tabulated oscillatory aerodynamic matrices were generated at 12

kk values between 0.0 and 2.0 using the STABCAR’ computer code which was also employed 10



calculate the baseline p-plane roots using the p-k method with ten vibration modes. The
resulting root-locus plots are shown in Fig. 1 which indicates two flutter mechanisms.
The flutter dynamic pressure and frequency of the first mechanism (second branch) are
qf=1.447 psi and (0{—58.94 rad/sec (kﬂut=0.21). The flutter results of the second
mechanism (seventh branch) are qf=4.247 psi; (of:194.43 rad/sec (kﬂut:0'69)'

The physical weigluinlgs were performed with g=1.2 psi. Two types of physical
weightings are compared below. The first type (symbolized by P-0) is with the onginal
measures-of-importance of Eq. (6), namely with no peak widening (nwd:O) and with no
upscaling (Wcut:() in Eq. (7)). The second type (symbolized by P-2) is with the two
peak-widening cycles (nwd=2) and with Wcu[=0.01. The maximal weighted magnitudes of the
P-0 aerodynamic data terms are given in Table 1. The most important modes are 2, 3 6, 7
and 10 which have the highest diagonal values. The off-diagonal values associated with
these modes are also higher than those of most other terms. It can be noticed that about
50% of the terms in Table 1 are smaller than 0.01. These terms are scaledup to 0.01 in

the P-2 case. Comparison of Table 1 with the aeroelastic behaviour of Fig. 1 indicates

that the weighting is reasonable over the entire q range of interest.

1= 1 2 3 4 5 6 7 8 9 10

j=1  0.098 0.126 0.086 0.012 0.000 0.018 0.007 0.001 0.006 0.005
2 0.137 1.000 0.707 0.038 0.007 0.129 0.104 0.008 0.079 0.045
3 (0.085 0.722 0.622 0.052 0.003 0.091 0.039 0.003 0.029 0.015
4 0.010 0.059 0.044 0.022 0.001 0.006 0.003 0.000 0.002 0.000
5 0.001 0.003 0.004 0.002 0.043 0.002 0.001 0.000 0.001 0.001
6 0.027 0.132 0.115 0.013 0.002 0.377 0.026 0.003 0.012 0.060
7 0.013 0.079 0.053 0.006 0.001 0.042 0.274 0.004 0.028 0.066
8§ 0.001 0.008 0.005 0.000 0.000 0.003 0.003 0.018 0.002 0.001
9 0.0l11 0.070 0.041 0.006 0.001 0.023 0.031 0.003 0.135 0.09
10 0.007 0.046 0.021 0.007 0.001 0.087 0.087 0.000 0.098 0.291

Table 1: Maximal weighted magnitudes of the aerodynamic data terms.

The flutter characteristics of the resulting state-space models have been found by a
linear root-locus analysis with variable q. The quality of the approximations is evaluated

by comparing the state-space results with STABCAR result. An overall measure in each case



is the RMS value of the percentage errors in the four flutter parameters (qf ,(of P and
1 "1 "2

W ). Comparisons betwezn RMS flutter errors in non-weighted (N) cases and physically
) :

weighted (P-0 and P-2) cases are shown in Fig. 2. It can be observed that the P-2 cases
generally yield the best results and that they are more consistent than the P-O cases.
Calculations at Mach 1.15 (not shown) exhibit similar results.

The  root | locus of the P2 case with 6 aerodynamic  lags,
diag[R]:(—0.2,—0.45,-0.8,-1.2,—1.7,—2.0] is compared in Fig. 1 to that of the reference
STABCAR solution. It can be observed that the agreement is good over the entire ranges of
frequency, damping and dynamic pressure.  This indicates that the physical weights
calculated at q, are adequate over the entire range.

All the MS cases above were constrained to match the data at k=0.0 and at the highest
tabulated reduced frequency, namely kf::kg=2.0. Data match constraints at k1 values close
to either one of the two kﬂut values caused a slight improvement in the respective
flutter mechanism, but a slight increase of the overall RMS error measure by about 1%. An
error increase of about 2% was obtained when [AQ}:[O] replaced the kf constraints. Much
more significant errors resulted from the replacement of the kg constraints by AIZO even
when applied 1o the aerodynamic terms associated with the highest frequency mode only.
These errors were reduced considerably with the application of the new procedure for
subsequent dynamic residualization.

To demonstrate the application of the modified MS approximations in subsequent
flutter analysis with dynamic residualization, the P-2 model with 6 aerodynamic states has
been extended to include the first 20 vibration modes (instead of 10). The MS
approximations were performed with the special residualization constraints assigned to the
last 10 modes. The reference case is flutter analysis with all the 20 vibration modes.
Reduced-size flutter analyses were performed by eliminating a subset of high-frequency
modes by either mode truncation, static residualization or dynamic residualization.
Variations of flutter dynamic pressure percentage errors vs. number of eliminated modes

are shown in Fig. 3 for the second flutter mechanism. Similar trends, but with smaller



!

i

errors, were obtained for the first flutter mechanism. These results demonstrate that MS

aerodynamic approximations facilitate additional high accuracy model size reduction via’

dynamic residualization.
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Figures

Figure 1: Root 1ocﬁs of the 10 mode subsonic AFW case.

Figure 2: RMS flutter errors resulting from MS aerodynamic approximations.

Figure 3: Flutter dynamic pressure errors of the second flutter mechanism vs. #

of eliminated high-frequency modes.
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Pppesdix B

Multidisciplinary Optimization of Aeroservoelastic Systems*

Mordechay Karpel*
Technion - Israel Institute of Technology
Haifa, Israel

Abstract

Efficient analytical and computational tools for simultaneous optimal
design of the structural and control components of aeroservoelastic systems are
presented. The optimization objective is to achieve aircraft performance
requirements and sufficient flutter and control stability margins with a minimal
weight penalty and without violating the design constraints. Analytical
sensitivity derivatives facilitate an efficient optimization process which
allows a relatively large number of design variables. Standard finite-element
and unsteady aerodynamic routines are used to construct a modal data base.
Minimum-state aerodynamic approximations and dynamic residualization methods are
used to —construct a high accuracy, low order aeroservoelastic model.
Sensitivity derivatives of flutter dynamic pressure, control stability margins
and control effectiveness with respect to structural and control design
variables are presented. The performance requirements are utilized by equality
constraints which affect the sensitivity derivatives. A gradient-based
optimization algorithm is used to minimize an overall cost function. A
realistic numerical example of a composite wing with four controls is used to
demonstrate the modeling technique, the optimization process, and their accuracy
and efficiency.

Introduction

The design of the structural and control systems of a flight vehicle with a
given aerodynamic configuration starts with separate analyses which are aimed at
satisfying basic stress and performance requirements. These preliminary designs
are then optimized to satisfy structural and control stability margin
requirements with a minimal performance cost and without violating the design
constraints. Modern high-performance, control-augmented aircraft may have a
strong coupling between the structural and control systems through aeroelastic
effects. This calls for a multidisciplinary optimization process in which
structural and control design variables are modified simultaneously.

The purpose of this work is to present a practical and efficient
optimization scheme in which the various aeroservoelastic aspects are analyzed
and synthesized with a common model. The applicability of this approach to
realistic design cases has been demonstrated by Livne et al.1 who presented an
integrated synthesis scheme that can treat a rich variety of behaviour
constraints and performance measures such as stress, displacements, control
surface travel and hinge moments, aeroservoelastic poles, gust response, drag

*Supported by NASA Grant NAGW-1708
*Senior Research Fellow, Faculty of Aerospace Engineering



and aircraft maneuver parameters. A thorough literature survey is also given in

Ref. 1. The structural model of Ref. 1 is based on the equivalent plate
approach of Giles  with which a complex structure can be represented by a
relatively low number of degrees of freedom. This allows the inclusion of the

entire structural model in the aeroservoelastic model, which is impractical with
common finite-element models like those of NASTRAN.

The optimizatior suggested in this paper can start with any structural and
aerodynamic linear models, which has an advantage in practical applications. It
is assumed that the structure can be represented in the optimization by a
limited set of low-frequency vibration modes of the base-line model. The
general scheme of a major optimizdtion cycle is given in Fig. 1. An aerocelastic
modal data base is first constructed for a relatively large number of modes.

I. Data-Base

Finite-Element Unsteady Aero
Model Model
; P J«
Design Variable Modes >
Matrices 1
Generalizad Frequencies, Gen. Aero
Matrices Generalized Matrices
Masses
j I1. Modeling
Data Rational

Heighting ? Approximations

-

Mode
Selection ’
Control Aeroservoelastic
L— _—
System Model

l [ I11. Optimization

=9 1

Objectives and
Constraints

l
T l
l
|

Sensitivity
Derivatives

Model | No Yes Design

Update | 1n;mum Evaluation

Fig. 1. The general scheme of a major optimization cycle.



The computational efficiency of this part is not as important as that of the
later parts because it is performed once for the entire optimization process or
at least for the major part of 1it. The aeroservoelastic modeling part of the
scheme is aimed at resulting in a model of minimal size, but still accurate
enough for the optimization process. Several size-reduction techniques are
combined to achieve this goal and to provide the analyst with physical insight
and numerical measures for an a priori evaluation of the size-reduction effects.
The third part of the optimization scheme is the actual model update process to
minimize a cost function within the design -constraints. High computational
efficiency of this part facilitates an interactive design process where the
design can inspect the results and change parameters in order to perform
trade-off studies and to obtain realizable design.

More details, analyticals development and numerical applications are given
in the following sections. For the sake of clarity we start with the
description of the test-case model that will be used to demonstrate the various
parts of the optimization process. The formulation and applications are limited
in scope to allow elabcration on the new features of this work.

The Test Case Model
The test-case deals with the Active-Flexible-Wing (AFW) composite wind-

tunnel model tested at NASA Langley Research Center. A top view of the NASTRAN
finite-element model is given in Fig. 2. A description of the aerodynamic model
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0.1 R " e
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x {in}

Fig. 2. Top view of the AFW structural model.
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appears in Ref. 3. The mathematical model assumes antisymmetric boundary

conditions at Mach 0.9. The lowest 12 vibration frequencies and the associated
mode descriptions appear in Table 1.

Mode # Frequency (Hz) ' Description
1 ' 0. Rigid body roll
2 7.023 1st fuselage bending
3 7.856 lst wing bending
4 )13.069 Missile pitch
S 16. 161 2nd fuselage bending
6 27.408 2nd wing bending
7 38.271 1st wing torsion
8 39.639 Missile yaw
\ 9 41,137 Fuselage torsion
f 10 49.922 3rd fuselage bending
11 51. 640 3rd wing bending
12 57.403 2nd wing bending

Table 1: Natural Frequencies and Modes of the Base-Line Structure

The subject for optimization is the wing-box structure between y=18.45 in
and y=49.30 in. The wing-box composite upper and lower skins are mirror images
of each other. The wing-box is divided into 11 optimization zones as shown in
Fig. 3. The base line weight of the optimized portion of the structure is 3.06
1b. The total number of high-strength graphite-epoxy pligs in %ach ofothe skin§
varies between four at zone 2 (one in each of the 0, +45 , =45 and 90
or%entat%ons)oand tyenty atozone 9 (four in 0° and two in each of the 280, —620,
45, -45 , 73, -17 and 90 orientations).

The model has 4 control surfaces per wing (see Fig. 2) driven by
third-order actuators. A zero-order control system reads the output of a roll
rate-gyro located near the centerline and commands the actuators through
different gains. A performance analysis established that a control law which
supplies a rolling moment of L=-3000 lb-in per unit aircraft roll velocity
(mihus pilot roll command) is required for adequate roll performance at the
design dynamic pressure qd=1.5 psi. This yields the equality constraint

ZGiniLé, = L/qd . (1)

i
where Ea is the rigid aerodynamic rolling moment per unit dynamic pressure due
i
to unit deflection of the ith control surface and Gi and ni are the associated

control gain and aeroelastic effectiveness. In addition, the closed-loop



Fig. 3. Wing-box optimization zones.

aeroservoelastic system is required to exhibit a sufficient flutter margin

>
qp 2 1.44 a4 (2)
All the non-zero gains are required to exhibit sufficient gain margins

|GM,| > 6 db (3)
1

where GM1=20 1og(G;/Gi) where G;/Gi is a positive factor by which Gi has to be
multiplied to achieve instability at d4 (with other gains remain unchanged).
G;/Gi>1 yields the positive gain margin and G;/Gi<1 yields the negative one.

Phase margin requirements and their sensitivity derivatives are given in Ref. 4.
They are not discussed here because they are not critical in the test-case
problem of this paper.

The Aeroelastic Data-Base
The aeroelastic data-base (see top part of Fig. 1) has been constructed

using the NASTRAN code. The modes consist of the 25 lowest frequency vibration
modes of the base-line structure, [wm], and 4 control surface deflection modes,
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[wc], of unit rotation of the respective control surface and zero deflective

elsewhere. The modes serve as generalized coordinates in the Laplace domain
equation of motion

([Ms]sz ; [BS]S R [KJ ; q[QS(S)]]{E(S)}: —([MC]SZ . [QC(S)H{S(S)} (4)

where [MS], [BS] and [Ks] are the generalized structural mass, damping and
stiffness matrices respectively, [MC] is the control coupling mass matrix, {§}

is the' vector of generalized structural displacements, {8} is the vector of
control surface commanded deflections, [QS(S)] and [Qc(s)] are the generalized

unsteady aerodynamic force coefficient matrices and q is the dynamic pressure.
For the base-line structure [MS], [KS] and [BS] are diagonal where the first two

were calculated from the finite element model and [BS] was constructed with

structural damping of 0.01. [MC] can be calculated by

- BB

where [M] is the mass matrix in discrete coordinates. A convenient way to
calculate [wC] and [MC] is by disconnecting the control surfaces from the

actuators in the finite-element model and adding degrees-of-freedom representing
{&}. These degree-of-freedom are mounted in the normal modes analysis by a
fictitious mass matrix [Mf] of large magnitudes. The test-case analysis was
performed with the 4x4% [Mf] matrix equal [I]lO6 while the maximum value of the
other terms in the mass matrix is less than 1. The resulting modes include [WC]

as rigid-body modes while the other modes, frequencies and generalized masses
remain practically identical to those of the original structure. Each control
surface mode is normalized to a unit deflection of the respective 61.

Orthogonality implies

v 1TM o [y

m C

wmf 0 Mf I

= [0] (6)

where the matrices are partitioned according to the original coordinates and the
added ones. Equations (5) and (6) yield

] = [ ] "

which is of course much more computationally efficient than Eq. (5).

The unsteady aerodynamic code is employed to calculate [QS] and [Qc] of Eq.
(4) (using [wm] and [wC]) for various values of the nondimensionalized Laplace

variable s=ik where k is the reduced frequency wb/V where w is the vibration



frequency, b 1is a reference semi-chord and V is the flow velocity. The
aerodynamic data~-base of the test-case include 13 generalized aerodynamic
matrices for the kLvalues of 0., 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.4,

1.9, 2.5 and 3.1.

The femaining part of the aeroelastic data-base is the data needed for the
structural optimization. The unit value of a structural design variable P in

our case represents one composite fiber ply added to the upper and lower

surfaces of one of the zones of Fig. 3. Three design variables, representing

the Oo, 45° and -45° orientations are assigned for each zone. The stiffness ang

mass matrices, [Ki] and [Mi] associated with p, are calculated by the
i

finite-element code and pre and post multiplied by the appropriate partitions of

[wm] to yield

st T ] s - [l e

i i

Expressions for the derivative of [MC] with respect to ps are given in Ref. 4.
i
In our case a[MC]/BpS =0 because the structure of the control surfaces is not
i
modified throughout the optimization. The geometrical changes due to adding
plies to the wing surface ({stacking effects) are assumed to be negligible.

Aeroservoelastic Modeling

The aeroservoelastic modeling process (see part II of Fig. 1) is aimed at
obtaining an efficient constant coefficient, state-space model to be used in the
simultaneous structural and control optimization. To do so, the tabulated
[QS(ikL)] and [Qc(ikc)] matrices have to be approximated by rational functions.

A review and extensions to the most common rational approximation methods and

the associated model formulations are given in Ref. S. Among those, the
Minimum-State (MS) method’' has been shown in several applications to realistic
problems ' '~ to yield the most efficient aeroservoelastic models per desired

accuracy. Best MS results are obtained when the physical weighting algorithm of
Refs. 7 and 10, which weights the tabulated aerodynamic term according to their
aeroservoelastic importance, 1is applied. The [Qs(ika)] terms are weighted

according to their effect on the determinant of the system matrix on the left
hand side of Eq. (4), calculated at the tabulated s=ikLb/V points, and the

[Qc(ikt)] terms are weighted according to their effect on the return signal in a

Nyquist analysis performed with all the gains having the same non-zero values.
The aerodynamic matrices associated with the 25 vibration modes and the 4
control modes were approximated with 6 MS approximation roots, which yield only
6 aerodynamic augmenting states.

The formulation of the resulting aeroservoelastic model is developed in
Refs. 4 and 7. The closed-loop equation of motion for stability analysis reads



{x} = [A){x} (9)

where [A] is the closed-loop system matrix and {x} is the state vector combined
of the structural states {£} and {£}, the aerodynamic augmenting states {xa} and

the control system states (xc}. In our case, the full-size model has n=68

states (50 structural, 6 aerodynamic and 12 control states). The eigenvalues of
the constant coefficient, real-valued matrix {A] are used to analyze the system
stability. Root locus analysis with variable q yields the flutter dynamic
pressure, dqg, at which one of the root branches crosses' to the right hand side

of the Laplace domain. The gain margins of Eq. (3) are found by a similar
analysis with variable Gi which yields the instability gain G;. More details

and numerical examples for the calculation of flutter, gain and phase margins
are given in Ref. 4. The accuracy of the M5 approximation in the test-case has
been examined by comparing flutter results with those of NASTRAN (using the PK
method). The differences in 9 and we were less than 1%.

! Model Size-Reduction

The Computat%gnal efficiency of the optimization process is approximately
proportional to n . It is therefore desired to reduce n as much as accuracy
allows. The vibration modes are divided for this purpose into three groups,
those which may be truncated, those which may be eliminated via residualization,
and those which remain in the model as independent states. The physical
weighting algorithm described above and in Ref. 7 has been found to be a helpful
guide in the mode selection-process. Two measures of aeroservoelastic importance
are assigned to each mode. The measures are

max

Qr = {w.. Q. (ik )|}
1.1 Jyt] 1ije Sij L

and (10)

_ max .
QE. - j,L{wijLIQc..(lkL)l}
i ij

where wijL is the physical weight assigned to the (i,j) term of either the
tabulated [Qs(ikb)] or [Qc(ikb)]. The modal measures of aeroservoelastic

importance of 17 of the 25 data-base modes are given in Table 2 in decreasing
order of overall impcrtance. The remaining 8 modes, for which both QT and QE

i :
are less than 0.01, are truncated in the optimization process. The 6 modes in
the 2nd group of Table 2 are eliminated via residualization and the 11 modes in
the first group of Table 2 are retained as independent variables.



Mode #' QI Q5 Mode # QI Q3
1 0.482 1.000 0.022 0.035
4 1.000 0.125 0.031 0.009
3 0.611 0.404 16 0.033 0.003
6 0.512 0.035 18 0.024 0.007
12 0.264 0.034 24 0.023 0.005
2 0.149 0.114 25 0.024 0.003
11 0.161 0.035 22 0.019 0.004
7 0.175 0.023 13 0.017 0.004
9 10.135 0.026

*The other modes have Q* values of less than 0.01

Table 2: Modal Measures of Aeroservoelastic Importance

_The truncation is performed by crossing out the associated rows on columns
in [A] of Eq. (7). The truncated [A] satisfies

All A12 Ul : Ul

B 3 = i, (11)

A21 A22 U2 U2
where subscripts 1 and 2 relate to the retained and residualized states
respectively, and {U} :s the complex column eigenvector related to S=iwf. The

residualization in this work is performed by the dynamic method of Ref. 3. The
residualized system matrix [A] satisfies

[X]{ul} - mf{ul} (12)

It is assumed that the differences between e and {Ul} of Eq. (11) and those of

Eq. 112) are negligible. Consequently, the flutter eigenvalue and eigenvector
of [A] are used to calculate {UZ} from the bottom partition of Eq. (11).

The effects of truncation and residualization on d and its derivative with

respect to p_ are shown in Fig. 4. The solid lines give the percentage errors
2
introduced by truncation vs. the number of truncated modes. The base-line
values of qf=1.736 psi and aqf/apS =0. 188 psi have been obtained with the full
2
25 mode model where the gain values associated with the four control surfaces
are 0.0, -0.1, -0.1 and 0.0664 respectively. The modes truncated at each point
of Fig. 4 are those with the lowest measures of aeroservoelastic importance
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Fig. 4. Size-reduction effects on flutter dynamic pressure.

defined in Eq. (10). It can be deduced from the error rates of change that the
usage of these measures for mode selection is adequate. The errors due to the
truncation of 8 modes and residualization of 6 modes, also given in Fig. A4,
demonstrate the accuracy of the dynamic residualization relative to that of
truncation.

Control Effectiveness
The expressions for the aeroelastic control effectiveness parameters of Eq.

(1) and their sensitivity derivatives follow the modal approach of Ref. 11. The
real-valued [QS(O)], [QC(O)] and [KS] of Eq. (4) are partitioned into the rigid

and elastic mode partitions:
Q Q
[Q (0)] =1 "1 ®12 |, [Q (0)] = “
s = c

and ' (13)

10




When there is a single rigid body mode in roll, the effectiveness of rolling
moment due to unit deflection of the i-th control surface is

q —1(—
Yoo ), B
J a 12 2.

1. ' J
J

where {QC}2 is the j-th column of [Qc]2 and

J
3 _ B _ a[ZS]
(B1=(R 1+ (oK ) +q (0], : [AKS] -z py (15)
i s, i
i
where G[KS]/aps is calculated by Eq. (6) using elastic modes only. The

i
differentiation of Eq. (14) with respect to a structural design variable P
1

yields:

. 8K ]
o N L I A e
Ps. Q@ 12 Pg ]

i Cl, i
J
It should be noted that the calculation of all the control effectiveness
parameters in Eq. (14) and all their derivatives in Eq. (16), for a given set of

design variables, invclves only one matrix inversion of order n where n_ is the

[o}]
3
£Q

number of elastic modes after truncation (16 in our case).

The variation of n4 and 6n4/aps , divided by their base-line values, with’

2
the number of low frequency modes taken into account are shown in Fig. 5. The
base-line values, calculated by all the data-base modes are n4=0‘216 and

6n4/6ps =0.0079. The stars indicate the modes which will be actually truncated
2

in the optimization. The convergence rates demonstrate the adequacy of the

modal approach in considering control effectiveness in structural optimization.

It should be noticed, however, that the convergence of the sensitivity

derivatives is slower than that of m itself.

Sensitivity Derivatives and Constraints

The sensitivity derivatives of flutter dynamic pressure and gain and phase
margins with respect to structural and control design variables are presented in
Ref. 4. They are based on the neutral stability eigenvalue, the associated
column and row eigenvectors and derivatives of [A] of Eq. (7), namely the system
matrix before residualization. When the model is residualized, the full-size

11
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into account.

column eigenvector is calculated from the reduced-order one as discussed after
Eq. (12). The full-size row eigenvectors are calculated in a similar way but
with Eqs. (11) and (12) transposed.

Equality constraints are defined as a linear dependency between the design
variables of the form

XC,p;, = C, (17)

One of the design variables, Py which has a non zero Ck, is defined as a

dependent variable. The differentiation of Eq. (17) with respect to an
independent design variable, pj, yvields the constrained derivatives

a8c
3 1 [ i ] 3
—_— = = - — |C, + Z — p.| =— (18)
apj apj Ck J i apj i apk

In our test-case, the rolling moment requirement of Eq. (1) is utilized by
defining G4 as a dependent gain, which yields the constrained sensitivity

12



derivatives with respect to other gains

n.L
3 3 385 5
- _ _9_ (19)
5 9C, - aG,

and the constrained sensitivity derivatives with respect to the structural
design variables

6 -8 - 1 [z L. G| o (20)
~ ap = . dp 8, i) oG
8ps s 1r;4L(S i S, i 4
j J 4 J

The Optimization Process

Three cases of the base-line structure with different control gains are
given in Table 3. All the cases satisfy the rolling requirement of Eq. (1) with

G1=O.O. Case 1 is with G2—G4 and G3=O, which yields qf<qd. Since aqf/aG4 is

4 is relatively low, G4 can be used to suppress flutter

while the other gains compensate for the loss of rolling moment. This 1is
utilized in cases 2 and 3 in which qf>qd but the flutter and gain margin

relatively large and 7

requirements of Egs. (2) and (3) are not met. Even though the main participants
in the flutter mechanisms of cases 2 and 3 are the same modes (3 and 4 of Table
1), the flutter frequency, gain margins and the derivatives are substantially
different, which indicates a high sensitivity of the stability characteristics
to parametric changes.

To obtaln a balanced structural design, all the design varlables associated
with the -45° ply direction are constrained to be equal to the +45° ones. To
avoid violation of stress requirements and to obtain a smooth design, all the
structural variables are limited to ngs gps where pS=1.0 in zones 1 and 2 of

i
Fig. 3, 2.0 in zones 3 to 5, 3.0 in zones 6 to 8 and 4.0 in zones 9 to 11. The

control gains are constrained to G =0 and the other |G |<G where G is equal to

eltheg 0.09 or 0.1. The remaining independent design variables are the twenty
two 0 and 45 structural variables and two control gains (G2 and G3).

A preliminary analysis indicated that the critical stability parameters are
qf and the positive GMj values for j=2 to 4. Consequently, the cost function to

be minimized is

(AW-AW ) A.(q, -q 4 (GM -GM.)
J = eAw ° 4 e f7fo f Z ° J (21)

where A and GMO are the requested flutter dynamic pressure and gain margins,

13



parameter Case 1 Case 2 Case 3
G, -0.0871 ~0. 0900 -0.1

Gy 0.0 . -0.0900 -0.1

G, : ~ -0.0871 0.0203 © 0.0667
g, (psi) 0.633 1.564 1.745
v (rad/sec) 78.910 74.646 55.180
GM,, (db) - 0.798 7.993
GM, (db) - 0.613 8.743
GM, (db) - 9.231 4.148

'

8q,/8G,, 1.94 6.97 -1.62
84,/ 3G, 2.81 9. 30 1.27
3q,./8G, 5.00 45.04 -10.02
aqf/aé2 -3.82 -153.4 34.06
aqf/aé3 -15.86 -39.3 12.09

Table 3: Three Base-Line Design Cases with Different Control Gains

AW is the added welight, Awo is the allowed weight penalty and AW and Af are cost

weighting parameters. The sensitivity derivatives of J are

8 _ ., eAw(Aw—Awo) R aqf eAf(qfo—qf) . 4 aGMj e(GMO—GMJ) (22)
3p., AW i f ap, ap.
i i j=2 i

where P is either a structural variable p, ora gain Gi and W is the weight
i
penalty associated with pS =1.
i

A steepest descent optimization algorithm has been used to perform the four
optimization cases presented in Tables 4 and S. Case I of Table 4 has been
performed to find the optimal gains, limited by G=0.1, without changing the
structure. The results are close to those of case 3 of Table 3. but with better
qf and gain margins. However, df does not satisfy the required margins. The

14



parameter Case 1 Case I1I Case III Case 1V
gain only oo G3=O
G.uw. 0.1 0.1 0.1 0.9
AW(1b) 0. 0.070 0.277 0. 287
qf(psi) 2.031 2.191 2.183 2.620
wf(rad/sec) 51.397 59. 307 83.610 66. 420
GMz(db) 6.57 6.56 9.57 6.39
GMS(db) 7.48 6.69 - 5.24
GM4(db) 7.07 8. 37 8.92 8.84
G2 -0.0974 -0.0974 -0.1 -0.09%
G3 -0.0914 -0. 0901 0.0 ~-0.09
Ga 0.0481 0.0435 -0. 0315 0.0230
Table 4: Four optimization cases.
i zone ply Case II Case III Case 1V
direction (o)

1 1 0 0.199 1. 0.

2 1 45 0.020 1. 0.

3 2 0 0.317 1. 0.

4 2 45 0.015 1. 0.

) 3 0] 0.002 0. 0.

6 3 45 0.098 2. 0.

7 4 0 0. 0. 0.

8 4 45 0.157 2. 0.

9 5 0 0.014 0. 0.

10 5 A5 0.035 2. 0.

11 6 0 0. 0. 0.

12 6 45 0.075 0. 0.

13 7 0 0. 0. 0.

14 7 45 0. 0. 0.

15 8 0 0. 0. 0.

16 . 8 45 0. 0. 0.

17 9 0 0.538 0. 4,

18 9 45 0. 0. 0.

19 10 0 1. 346 0.092 4,
20 10 45 0. 0. 0.
21 11 0] 0. 0. 4.
22 11 45 0. 0. 0.

Table 5: Structural changes (ps ) in Cases II to IV
i

simultaneous structure and gain optimization of Case II yields sufficient

margins at the penalty of adding 9.07 l1b to the structure. It can be noticed
from Case II of Table 5 that the O plies in the wing root zones 9 and 10 and in
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the wing tip zones 1 and 2 are the most effective. The 45° plies of zones 3 and
4 have also some effect while the others are either not effective or constrained

to the minimum gage. Case III is the same as II but with G3=O. The required

margins are also met but with an additional weight penalty of 0.207 1b. The
flutter frequency and the structural changes are substantially different than
those of Case II. The 0" and 45° plies of zones 1 and 2, and the 45° plies of
zones 3 to 5 achieve their maximum limits while all the others remain at or
close to their minimum limits. Case IV is the same as Case II but with gain
limits of G=0.9. The optimization process stopped in this case when all the
independent design variables reached their limits. The differences between the
resulting structures of Table 5 demonstrate the importance of simultaneous
structural and control optimization of aeroservoelastic systems.

The variations of e AW, P and P along the 10 step optimization
6 21
process of Case III are plotted in Fig. 6. This case has been performed with a

Step #

Fig. 6. Variations of flutter dynamic pressure, added weight and two structural
variables along the optimization path, Case II.

34 state aeroservoelastic model (22 structural, 6 aerodynamic and 6 control
states). The computation cpu time was about 5 min on a MicroVax 3200. The
dashed lines of Fig. 6 are for the same optimization process but with all the 25
data-base modes yielding a 62 state aeroservoelastic model, which took about 32
cpu min. Figure 6 demonstrates the efficiency of the optimization process and
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the accuracy of the reduced-size model ;elative to the full-size one.

Two NASTRAN model updates were performed with the P values of Cases III

and IV of Table 5. The entire aeroservoelastic modeling process of Fig. 1 was
repeated for each case, followed by root-locus stability analysis. All the new
stability characteristics were within 3% of the associated ones in Table 4,
which demonstrates the accuracy of the presented approach.

Conclusions

A systematic method for data-base construction, modeling and structural
and/or control optimization of aeroservoelastic systems has been presented. The
method is applicable to any objective function that can be analyzed by the
normal modes approach and analytically differentiated with respect to the design
variables. Standard, commercially available finite-element and unsteady
aerodynamic computer codes can be used to construct the aeroelastic data-base.
Application of Minimum-State rational approximations of the aerodynamic matrices
yields a low number of aerodynamic states relative to the number of structural
states. The weighting algorithm used to select modes for model size-reduction,
and the dynamic residualization method have been shown to yield high-accuracy,
reduced-order models. Sensitivity derivatives of flutter dynamic pressure and
control margins have been extended to deal with residualized systems.
Expressions for an efficient calculation of aerocelastic effectiveness parameters
and their sensitivity derivatives have been presented and used to implement
aircraft performance requirements. The ensemble of all these analytical and
computationél techniques yields an efficient, high-accuracy optimization process
which can be used as a practical design tool of realistic modern aeronautical
composite structures and control systems.
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